Geometri
Geometri er den del af matematikken, der undersøger tingenes størrelse, form, placering og dimensioner. Vi kan kun se eller lave former, der er flade (2D) eller massive (3D), men matematikere (folk, der studerer matematik) kan studere former, der er 4D, 5D, 6D osv.
Firkanter, cirkler og trekanter er nogle af de enkleste figurer i flad geometri. Terninger, cylindre, kegler og kugler er enkle former i fast geometri.
Bruger
Plan geometri kan bruges til at måle arealet og omkredsen af en flad form. Med faststofgeometri kan man også måle en fast forms volumen og overfladeareal.
Geometri kan bruges til at beregne størrelsen og formen af mange ting. For eksempel kan geometri hjælpe folk med at finde:
Oprindelser
Geometri er en af de ældste grene af matematikken. Geometri begyndte som en kunst at opmåle land, så det kunne deles retfærdigt mellem mennesker. Ordet "geometri" stammer fra et græsk ord, der betyder "at måle jorden". Den har udviklet sig fra dette til at blive en af de vigtigste dele af matematikken. Den græske matematiker Euklid skrev den første bog om geometri, en bog kaldet Elementerne.
Ikke-euklidisk geometri
Plan- og rumgeometri, som beskrevet af Euklid i hans lærebog Elementer, kaldes "euklidisk geometri". I århundreder blev dette blot kaldt "geometri". I det 19. århundrede skabte matematikere flere nye former for geometri, som ændrede reglerne for euklidisk geometri. Disse og tidligere former blev kaldt "ikke-euklidisk" (ikke skabt af Euklid). F.eks. er hyperbolisk geometri og elliptisk geometri opstået ved at ændre Euklids parallelpostulat.
Ikke-euklidisk geometri er mere kompliceret end euklidisk geometri, men har mange anvendelsesmuligheder. Sfærisk geometri anvendes f.eks. inden for astronomi og kartografi.
Eksempler
Geometri starter med nogle få enkle idéer, som man mener er sande, og som kaldes aksiomer. Som f.eks:
- Et punkt vises på papiret ved at berøre det med en blyant eller pen uden at foretage nogen sidelæns bevægelse. Vi ved, hvor punktet befinder sig, men det har ingen størrelse.
- En ret linje er den korteste afstand mellem to punkter. Sophie trækker f.eks. et stykke snor fra et punkt til et andet punkt. En lige linje mellem de to punkter vil følge den stramme snorens vej.
- Et plan er en flad overflade, der ikke stopper i nogen retning. Forestil dig f.eks. en væg, der strækker sig i alle retninger i det uendelige.
Relaterede sider
- Topologi
Spørgsmål og svar
Q: Hvad er geometri?
A: Geometri er en gren af matematikken, der beskæftiger sig med objekters størrelse, former, positioner og dimensioner.
Q: Hvilke typer af former kan vi se eller lave?
A: Vi kan kun se eller lave flade (2D) eller faste (3D) former.
Q: Hvem er i stand til at studere former, der er mere end 3D?
A: Matematikere (folk, der studerer matematik) kan studere former, der er 4D, 5D, 6D og så videre.
Q: Hvad er nogle eksempler på simple former i flad geometri?
A: Firkanter, cirkler og trekanter er nogle af de simpleste former i flad geometri.
Q: Hvad er nogle eksempler på simple figurer i fast geometri?
A: Terninger, cylindre, kegler og kugler er simple former i fast geometri.
Q: Kan vi se eller lave former, der er mere end 3D?
A: Nej, vi kan ikke se eller lave former, der ligger uden for 3D, men matematikere er i stand til at studere og forestille sig dem.
Q: Hvad er forskellen mellem flad og fast geometri?
A: Flad geometri beskæftiger sig med former, der er 2D, mens fast geometri beskæftiger sig med former, der har 3D-form.