Fibonacci-tallene: Definition, formel og historisk baggrund
Få overblik over Fibonacci-tallene: definition, formel, gentagelsesrelation og historisk baggrund fra Liber Abaci til naturens mønstre.
Fibonacci-tallene er en matematisk talrække, der er opkaldt efter Leonardo af Pisa, kendt som Fibonacci. Fibonacci skrev i 1202 en bog kaldet Liber Abaci ("Beregningsbog"), som introducerede talmønsteret i den vesteuropæiske matematik, selv om matematikere i Indien allerede kendte det.
Det første tal i mønsteret er 0, det andet tal er 1, og hvert tal derefter svarer til at lægge de to tal lige før det sammen. F.eks. 0+1=1 og 3+5=8. Denne sekvens fortsætter i det uendelige.
Dette kan skrives som en gentagelsesrelation,
F n = F n - 1 + F n - 2 {\displaystyle F_{n}=F_{n-1}+F_{n-2}}
For at dette kan give mening, skal der være mindst to udgangspunkter. Her er F 0 = 0 {\displaystyle F_{0}=0} og F 1 = 1 {\displaystyle F_{1}=1}
.
Eksempel og første termer
De første Fibonacci-tal (med F0 = 0 og F1 = 1) er:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
I nogle sammenhænge begynder man i stedet rækken med F1 = 1 og F2 = 1; begge konventioner bruges, så vær opmærksom på indekseringen i litteraturen.
Formler og vigtige egenskaber
- Lukket form (Binet's formel): Fibonacci-tallene kan udtrykkes ved en lukket formel ved hjælp af det gyldne snit φ = (1 + √5)/2 og ψ = (1 − √5)/2:
F n = (φ^n − ψ^n) / √5. Denne formel gør det muligt at beregne F n direkte uden at gennemgå alle foregående termer.
- Forholdet mellem på hinanden følgende termer: Kvotienten F_{n+1}/F_n nærmer sig det gyldne snit φ ≈ 1,6180339887... når n bliver stor. Dette er grunden til, at Fibonacci-rækken ofte forbindes med det gyldne snit.
- Genererende funktion: Den formelle potensrække, som genererer Fibonacci-tallene, er
G(x) = x / (1 − x − x^2).
Den kan bruges til at udlede mange identiteter og lukke-formler for rækken. - Matrixrepræsentation: Rækken kan skrives ved matrixpotenser:
[F_{n+1} F_n]^T = [[1,1],[1,0]]^n [1 0]^T.
Dette giver effektive algoritmer til at beregne store Fibonacci-tal ved hjælp af hurtig matrixeksponentiering. - Identiteter: Der findes mange algebraiske relationer, f.eks. Cassinis identitet:
F_{n+1}F_{n-1} − F_n^2 = (−1)^n.
Andre eksempler er additionsformler, summeregler og relationer til binomialkoefficienter.
Historisk baggrund og navngivning
Selvom navnet stammer fra Leonardo af Pisa (Fibonacci), som spredte kendskabet i Europa gennem Liber Abaci (1202), var ideen om denne talfølge kendt tidligere i Indien. Tekster af indiske matematikere som Virahanka, Gopala og Hemachandra beskriver lignende sekvenser i forbindelse med tælleproblemer og metrik i poesi. Fibonacci indførte rækken i den europæiske litteratur, hvoraf navnet senere blev afledt.
Anvendelser
- Matematik og algoritmer: Fibonacci-ordener optræder i analyse af rekursive algoritmer, dynamisk programmering og datastrukturer som Fibonacci-heap.
- Natur og biologi: Fibonacci-tallene og det gyldne snit ses ofte i vækstmønstre som bladstilling (phyllotaxi), blomsterstande og spiralmønstre i skaller og frøstande.
- Kunst og design: Forholdet φ og Fibonacci-sekvensen bruges nogle gange i kompositionsregler og arkitektur, selvom deres æstetiske betydning ofte er overdrevet.
- Andre områder: Kryptografi, økonomi (modelbygning), musik og games bruger også følgen enten direkte eller som inspiration.
Praktiske bemærkninger
- Fibonacci-tal vokser eksponentielt med omtrent φ^n / √5. Derfor bliver tallene meget store hurtigt.
- For beregning af store F_n bruges ofte hurtige metoder som matrixeksponentiering eller anvendelse af Binet's formel med høj-precision aritmetik.
- Der findes mange variationer og generaliseringer, fx Lucas-tal (beslægtet række med andre begyndelsesværdier), og k-step Fibonacci-rækker, hvor hvert led er summen af de foregående k led.
Fibonacci-rækken er både et smukt teoretisk objekt med rige algebraiske egenskaber og et praktisk værktøj, der dukker op i overraskende sammenhænge i natur og teknologi.

En Fibonacci-spiral skabt ved at trække en linje gennem firkanterne i Fibonacci-fliserne; her anvendes firkanterne i størrelserne 1, 1, 1, 2, 2, 3, 5, 8, 13, 21 og 34; se Guldspiral.
Fibonacci-tallene i naturen
Fibonacci-tallene er relateret til det gyldne snit, som dukker op mange steder i bygninger og i naturen. Nogle eksempler er bladmønsteret på en stilk, delene i en ananas, blomstringen af artiskokker, udrulningen af en bregne og opstillingen af en fyrretræskogle. Fibonacci-tallene findes også i honningbiernes stamtræ.

Solsikkehoved med blomster i spiraler på 34 og 55 på ydersiden
Binets formel
Det niende Fibonacci-tal kan skrives i form af det gyldne snit. På den måde undgår man at skulle bruge rekursion til at beregne Fibonacci-tallene, hvilket kan tage lang tid for en computer at gøre.
F n = φ n - ( 1 - φ ) n 5 {\displaystyle F_{n}={\frac {\varphi ^{n}-(1-\varphi )^{n}}}{\sqrt {5}}}}
Hvor φ = 1 + 5 2 {\displaystyle \varphi ={\frac {1+{{\sqrt {5}}}}{2}}}} , det gyldne snit.
Spørgsmål og svar
Spørgsmål: Hvad er Fibonacci-sekvensen?
A: Fibonacci-sekvensen er et matematisk talmønster, der er opkaldt efter Leonardo af Pisa, kendt som Fibonacci. Den starter med 0 og 1, og hvert tal derefter svarer til at lægge de to tal lige før det sammen.
Spørgsmål: Hvem introducerede dette talmønster i den vesteuropæiske matematik?
Svar: Fibonacci skrev i 1202 en bog kaldet Liber Abaci ("Beregningsbog"), som introducerede talmønsteret i den vesteuropæiske matematik, selv om matematikere i Indien allerede kendte det.
Sp: Hvordan kan Fibonacci-sekvensen skrives?
Svar: Fibonacci-sekvensen kan skrives som en gentagelsesrelation, hvor F_n = F_n-1 + F_n-2 for n ≥ 2.
Spørgsmål: Hvad er udgangspunktet for denne gentagelsesrelation?
Svar: For at det giver mening, skal der være mindst to udgangspunkter. Her er F_0 = 0 og F_1 = 1.
Spørgsmål: Fortsætter Fibonacci-sekvensen for evigt?
Svar: Ja, sekvensen fortsætter i al evighed.
Spørgsmål: Hvor lærte matematikerne først om dette talmønster? Svar: Matematikere i Indien kendte allerede til dette talmønster, før det blev introduceret i Vesteuropa af Leonardo af Pisa (Fibonacci).
Søge